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In this paper we are concerned with the efficiency and robustness of different optimal pulses that drive the
isomerization reaction in a bistable potential. The perturbation is treated as a random-phase strong oscillation
that shifts the energy barrier. We show how the reaction can be controlled by means of very intense single
Gaussian pulses or linear combinations of these pulses and how the control can survive after the perturbing
action. The actual resistance to the bath effects changes with the scheme used, and we concentrate on the
different behaviors for different bath frequencies. In particular pump-probe schemes offer stabilizing properties
at some frequency windows of the bath spectral range. We also address the problem of phase sensitivity and
we find the presence of phase nodes, which are particular values of the bath frequency where the reaction
dynamics is almost insensitive to the actual phase of the bath oscillations.

1. Introduction

Optimal control theory (OCT) of molecular systems has by
now developed a few general physical schemes1 whose validity
has been experimentally verified in some cases.2 The great
majority of the effort was placed on the isolated molecule case,
and some arguments have been prompted against the ability of
these phase-sensitive schemes to survive after the strong
decoherence mechanisms found in condense matter. Between
some recent attempts to treat the bath effects on the “optimal”
dynamics, we outline the use of a semiclassical phase-space
representation in the perturbation limit by Wilson et al.,3 the
use of a pure-dephasing bath in the Markov approximation by
Sugawara and Fujimura,4 or even beyond some approximations
for resonant baths by Korolkov et al.5 In a very recent work
close in spirit to the present contribution, Cao6 showed both
the effectiveness and robustness of a positive chirped pulse in
order to assure absorption in the UV.
In this paper we address the question of controlling an

isomerization reaction7,8 and exploring the robustness of the
control strategies under different bath perturbations. We
concentrate our attention in the case of very low barrier reaction
and strong nonresonant perturbation using very simplistic
models. The unperturbed system is an asymmetric bistable
potential chosen to represent a generic unimolecular process
such as an isomerization reaction or a proton transfer. Several
IR optimal fields in the femtosecond regime are found that lead
the system from the left, deeper well to the right one,
representing distinct physical strategies that realize the reaction.
In particular we are interested in experimentally feasible fields
expressed as single Gaussian-shaped pulses or linear combina-
tions of Gaussian-shaped pulses. In contrast with the schemes
developed by the groups of Paramonov and Manz,7 we
concentrate on very short time dynamics, and therefore the
excited wave packet is never an eigenstate of the system, but
rather a broad coherent superposition of the eigenstates of the
system. We study the sensitivity of the reaction yield with
respect to the different parameters that shape the fields, and we
also address the question of phase sensitivity of the optimal

pulses. Then we consider the system immersed into the bulk
of a bath very simply modeled by a single frequency of the
spectral density and phase-averaged with respect to the laser
field. We show how much of the reaction control survives using
the different optimal pulses for several values of bath-system
coupling and of bath frequency. In particular it is found that
certain control scenarios prove to be more robust for specific
conditions of the bath (frequency windows in the spectral
density), while others seem to be more insensitive in the whole
range of the numerical experiment. The degree of phase
sensitivity related with the phonon-system coupling is also
shown. In a general context, we endeavor to reveal the most
suited strategies that control the reactive event for this kind of
system, extending the validity of the model to perturbations
including a whole spectral distribution of frequencies and
implicit decoherent mechanisms.
The outline of the paper is the following. In section 2 we

give a brief description of the system and the perturbation to
which it is subjected. In section 3 we examine the recipe
employed to find the set of optimal fields. Then in section 4
we first analyze the dynamics of the system driven by the
optimal fields, trying to unravel the physical mechanisms
underlying the reaction. Then we switch on the perturbation
and comment on the sensitivity of the schemes to the different
parameters that define the coupling of our system with the
environment. Finally we conclude in section 5 with the
summary and prospects.

2. The System

The system that undergoes the reaction is a bistable potential
bearing two localized states in the deeper left well,|L0〉 and
|L1〉, only one localized state in the right well,|R0〉, and a set of
(infinite) delocalized states|Dn〉, the first of them being exactly
at the top of the barrier, which we differentiate from the others
by the distinct label of|B〉. The potential energy with the energy
levels is shown in Figure 1. It is defined by the formula

* E-mail: jesus@hp720.quim.ucm.es.
V(x) ) D + fc

0
ωbx

2
- (ωbx

2 )2 + 1
4D (ωbx

2 )4 (1)

4321J. Phys. Chem. A1998,102,4321-4327

S1089-5639(97)03278-7 CCC: $15.00 © 1998 American Chemical Society
Published on Web 02/28/1998



where the quadratic parameters are chosen to represent an
intramolecular proton-transfer reaction (in particular the energet-
ics is roughly representing the malonaldehyde proton-transfer
reaction).
The values of the parameters arefc

0 ) 10-2 amu‚Å/fs, ωb )
1392.6 cm-1, andD ) 0.25 eV (2089 cm-1). The reduced mass
is always taken as 1 amu, and the dipole function is simply the
reaction coordinate (centered at the top of the barrier)µ ) x.
All scaling factors are included in the electric field amplitude.
Since the system has no center of symmetry, there are no
symmetry rules and all transitions are allowed. The strongest
dipole matrix elements couple statesL0 with L1, L1 with B and
D1, B with D1 andR0, andD1 with R0 andD2.
To include the coupling of the bath with the system, we

consider a perturbation of the form

and we test for different values of the parameters the sensitivity
of the system with respect to the amplitude of the perturbation
(Ac goes from 10% to 75% offc

0) and frequency of the bath (ωb

goes from 20 to 333 cm-1). We point out that these conditions
imply a regime of severe perturbation, where the landscape of
the potential barrier changes at least 10% of its value at rest.
We carry out simulations changing the initial phase of the
perturbation in the entire range (0-2π), and the final results
that we show are phase-averaged.
From a time-independent point of view, the net effect of the

perturbation will be to blur the energy of the system eigenstates.
This energy uncertainty (in the presence of radiation coupling)
implies the overlapping of the states|B〉 and|D1〉 but does not
change the number of energy levels inside the wells.

3. Method

There are a few methodologies (or recipes) to set up and solve
the equations that assure optimal pulse shaping. For a com-
parison we address the readers attention to ref 9. Here we start
assuming the full variational procedure of Rabitz10 and further
impose the shape of the field as a linear combination of
Gaussian-shaped pulses:

So we are looking for the set of optimal parameters{ωi, Γi,
τ0,i, Ai} such that the probability of finding the system in the
right well at timeT, |〈R0|ψ(T)〉|2, is a local maximum (where
ψ(t) represents as usual the system wave function).
Say, if êi is any of the parameters that define the field, the

variational optimal control procedure implies that at the
maximum the optimal parameters obey the following equation:
11

whereu stands for the imaginary part. Bothψ(t) andø(t) are
wave functions that follow the time-dependent Schro¨dinger
equation (TDSE) with initial conditions

where ø(T) is actually the Lagrange multiplier in the OCT
problem and it carries the information of the part of the system
that has reached the physical objective at timeT. Formula 4
then links the optimal parameters with the matching of the full
wave function and the part of the system that is already moving
to the desired target, via the dipole momentµ.
The TDSE equations are solved by using the split-operator

algorithm,12 and the optimal field equation is solved iteratively
using a gradient method.13 We emphasize that no immediate
feedback algorithm (as in the Krotov method9) can be used when
the field is parametrically optimized. The optimal parameters
provide the functional form of the field and implicitly depend
on it, through the wave function dynamics at all times.

4. Results and Discussion

4.1. Search for the Optimal Pulses. In this section we
attempt to find several optimal pulses in order to drive the
isomerization reaction from the left well (initial state is|L0〉) to
the right well (final state is|R0〉) of our potential.
The optimal pulse implicit equation has in most cases multiple

solutions. First there is a set of outside parameters that easily
induce different solutions (and even distanced solutions in the
topological space of the pulses) which are related to experi-
mentally controlled parameters, such as the time duration of
the pulseT, the number of Gaussian-shaped pulses to be used
(like in pump, pump-dump, pump-pump-dump experiments),
and the set of free parameters to be optimized (the width of the
Gaussian, the carrier frequency, the intensity, etc., or even a
set of parameters defining a different functional form for the
pulse). Moreover depending on the initial conditions, the
iterative process in general leads to different results, and the
experienced researcher may use guess pulses of different kind
to induce the desired optimal pulse. Finally, we can resort to
different methodologies to solve the equation (when we omit
the restriction of the functional shape).
Of course there will be one of these optimal pulses to be

considered as the “most optimal pulse”, but all of them drive
the system to local maxima of the transition probability from
|L0〉 to |R0〉. Also, the behavior of the pulse can change
dramatically with the occurrence of the perturbation, and
therefore we search not only for an optimal efficient pulse but
also for a robust one. We defer the discussion of this feature
to the next section.
In Table 1 we show the parameters that define the optimal

pulses obtained that will serve for further discussions in the

Figure 1. Potential energy and energy levels for the bistable system.
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paper, and the key for the nomenclature follows. In the first
row of Table 2 we show the results obtained by the optimal
fields (reaction yields). Here we will comment on the mech-
anisms they force into the system to achieve the reactive event,
their distinct features, and other solutions explored. In Figure
2 we show the time evolution of the transition probabilities for
four typical cases. A word of caution for the nomenclature
employed, which can be misleading: the terms used serve only
for internal comparison between the different cases, and
therefore even a weak and long pulse should be understood in
a context of very strong fields in the femtosecond regime
(intensities above 1010 W/cm2). In particular, CW makes
reference to fields whose Gaussian width (fwhm) is greater than
1 ps.
We start with the case of single Gaussian-shaped pulses. For

short times (T ) 200 fs) we have the prototype cases of ISP
(intense short pulse) and WLP (weak long pulse). In both cases
the dynamics show a two-step mechanism, first with absorption
of energy above the barrier and then with emission. In the first
step, an average absorption of two to three photons drives the
system to transient nonresonant populations (at very short times
we don’t have energy resolution yet) in the sequence|L0〉 f
|L1〉 f |B〉 f |D〉 f |B〉 f |D〉. After populating the delocalized
states, one or two photons are emitted, finally reaching the
desired|R0〉 state on the other well. So, one single pulse is
enough to saturate the upper levels and stimulate emission, with
the transient populations allowing the induced dipole for the

next photons to project essentially on the right well. When the
intensity of the field increases (ISP), the number of photons
absorbed (and at the end, emitted) is higher, and several states
above the barrier are reached; the beating is produced between
odd and even (including the barrier state) delocalized states.
This is shown in Figure 2A. By changing the intensity of the
pulse, we essentially can choose the final excited state selected,
|D1〉 or |R0〉. If we seek less intense pulses, in order to assure
equally proficient yields, we have to increase the width of the
pulse, as in the WLP case. Also the carrier frequency is slightly
shifted from the energy difference between the first two levels
in order to facilitate the two-photon absorption from|L0〉 to |D1〉.
Nevertheless the results are less sensible to both these parameters
than to the intensity. The other parameters take a minor role;
for instance, the phase of the pulse is almost unimportant,
inducing changes in the result of less than 2%.

When exploring optimal pulses at even shorter times (100
fs), the same general behaviors were obtained, but with lower
yields, since the final step of emitting energy competed with
the parasite process of absorption, and we had in general a linear
absorption of energy until the field was switched off. For very
high intensities, the maximum of the probability in the|R0〉 state
was achieved at shorter times, in less than 50 fs.

We also tested the proficiency of CW fields with frequency
matching the direct transition from the initial to the final desired

TABLE 1: Parameters that Define the Form of the Optimal Pulsesa

200 fs 400 fs 1 ps

ISP WLP PDP APD SPD PLD LPD CW

ωi/cm-1 1209 1192 1200 1226 1192 1209 2047 1093
1246 1265 1450 1253 970

Γi/fs 40.0 63.3 40.0 37.8 40.3 40.0 128.4 320.0
70.0 72.4 40.1 120.0 56.1

t0,i/fs 100.0 100.3 60.0 60.0 90.1 90.0 127.9 500.0
110.0 305.2 309.9 200.0 343.7

Ai/(107 V/cm) 3.92 2.80 2.84 2.76 3.13 2.97 3.63 1.2
1.26 1.17 2.10 0.57 1.91

a Acronyms are used to define the different optimal pulses. The nomenclature is the following: ISP stands for intense short pulse; WLP stands
for weak long pulse; PDP stands for pump-dump pulse; APD stands for asymmetric pump-dump; SPD stands for symmetric pump-dump; PLD
stands for pump and longer dump; LPD stands for longer pump and dump; and CW stands for continuous wave field (more than 1 ps).

TABLE 2: Reaction Yields (in Percent) Induced by the Optimal Pulses in the Presence of the Bath, for Different Bath
Frequenciesωb and for Two Values of Bath Coupling,Ac ) 0.1fc

0 andAc ) 0.4fc
0 (Above and Below Values in Each Row,

Respectively)a

200 fs 400 fs 1 ps

ωb ISP WLP PDP APD SPD PLD LPD CW

0 74.7 72.5 82.5 86.1 75.3 83.6 69.6 41.0
20 69.0 62.2 72.7 34.2 49.0 56.7 27.8 13.0

30.5 19.5 24.3 13.9 23.5 22.1 13.9 6.9
40 69.1 62.4 73.0 39.7 50.3 60.4 29.6 9.1

30.4 19.5 25.4 13.9 20.6 23.7 13.9 2.1
80 69.3 63.3 74.2 65.2 59.4 70.2 45.0 15.1

30.2 17.8 25.5 11.1 19.5 19.7 11.1 5.0
100 69.4 63.8 75.0 76.2 65.9 74.7 52.7 21.0

30.1 16.9 24.3 7.2 17.2 14.8 7.2 6.6
120 69.6 64.3 76.0 80.9 71.2 78.6 57.5 18.8

30.1 16.2 23.4 22.2 28.3 15.3 22.2 19.5
150 69.9 65.1 76.8 81.3 73.5 80.3 59.9 5.0

30.3 15.7 24.2 35.7 33.9 31.0 35.7 15.4
200 70.5 66.4 78.1 82.0 70.8 78.0 60.1 40.3

31.8 17.2 28.3 19.4 20.3 24.9 19.4 13.9
333 72.2 69.3 78.3 58.6 65.8 73.3 60.5 40.4

43.6 36.0 35.9 3.5 16.7 18.8 3.5 35.2

a The nomenclature is the following: ISP stands for intense short pulse; WLP stands for weak long pulse; PDP stands for pump-dump pulse;
APD stands for asymmetric pump-dump; SPD stands for symmetric pump-dump; PLD stands for pump and longer dump; LPD stands for longer
pump and dump; and CW stands for continuous wave field (more than 1 ps).
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state. Yet for 1 ps, this tunnel-induced reaction does not provide
yields comparable with those obtained by the aforementioned
pulses.
In the next step we tested a linear combination of two

Gaussian-shaped pulses. ForT ) 200 fs the optimal pulse
obtained, PDP (pump-dump pulse), looks like a single Gaussian
function with a long tail at the end. The physical realization
of the optimal dynamics seems similar to that of the single

Gaussian pulses, but now the pump pulse is a weaker version
of the ISP, and the decrease in the amplitude is enough to
populate selectively the|D1〉 state, while the dump pulse puts
into resonance states|D1〉 and|R0〉 and enables faster emission
of photons. Nevertheless both pulses overlap in time, and the
emission process begins while the states above the barrier are
still interchanging. The pump-dump scheme allows a rise in
the yield of more than 10% with respect to single Gaussian
schemes. ForT) 400 fs more possibilities are offered. In the
APD (asymmetric pump-dump) case, we simply increase the
time delay between the pump and the dump pulses. Now this
delay avoids any parasite process in the emission procedure.
We show the time evolution of the transition probabilities in
Figure 2B. In the SPD (symmetric pump-dump) case, the first
pulse amplitude is midway between the weak and the strong
cases, inducing mainly the selection of the|R0〉 state, but also
in equilibrium with the excited population in|D1〉 and |L1〉,
which are afterward deployed by the dump pulse. In this case,
as can be seen in Figure 2C, the pump pulse shifts the population
from |L0〉 to |R0〉 (with upper states as intermediates), and it
alone is responsible for a yield of 0.583. The dump pulse plays
a minor role, increasing the yield to 0.753 (30% improvement).
We also tested schemes where a longer resonant field was

used either as a pump or as a dump pulse. In the PLD (pump
+ longer dump pulse) case we use a pump pulse very similar
to that used in SPD and a longer time field, which is switched
on all the time, and according to its carrier frequency should
allow first the absorption from|L0〉 to |L1〉 and finally the
emission from|D1〉 to |R0〉. The dynamical behavior and results
obtained resemble closely that of the SPD case, the essential
difference being that now we use as a dump a much weaker
field (the longer field intensity is at least 1 order of magnitude
lower than that of the Gaussian-shaped pulses). In the LPD
(longer pump+ dump pulse) case, we first use a longer time
field to pump population from the initial state to the barrier
state|B〉, and then we deploy this state using a Gaussian-shaped
dump pulse. The dynamical behavior in this case is much
simpler, since many of the transient and strong field effects are
not present now. We show this behavior in Figure 2D.
From a general point of view, for two Gaussian-shaped pulses

the space of parameters duplicates its dimensionality and one
may expect an increase in the number of solutions (we show
some different types as samples, which of course do not cover
all possibilities). But the sensitivity of the different parameters
is almost the same, except for the relative phase between the
pulses. For this parameter the pump-dump scheme shows great
sensitivity, and the particular choice may induce no dump of
energy at all! When we use longer time fields as pump or dump
pulses, the degree of sensitivity decreases. For example, we
observe a variation of the yield from 0.86 to 0.10 in the APD
case and from 0.70 to 0.43 in the LPD case.
4.2. Perturbation Effects on the Optimal Dynamics. In

Table 2 we show a re´suméof the yields of reaction obtained
after “immersing” the system into the bath, using the same
optimal pulses, for different values of the bath frequency (in
rows) and for two values of the amplitude of the oscillation,Ac
) 0.10fc

0 andAc ) 0.40fc
0 (above and below values in each row,

respectively). We also have results forAc ) 0.25fc
0 andAc )

0.75fc
0 that are not shown in the table. Each yield represents an

average over the entire range of values of the initial phase of
the perturbation.
We first read the table from left to right, in order to make a

rough comparison of the resistance of the pulses to the bath
action. By following in detail the dynamics of the driven

Figure 2. Time evolution of the system driven by the optimal pulses:
(A) ISP (intense short pulse); (B) APD (asymmetric pump-dump);
(C) SPD (symmetric pump-dump); (D) LPD (longer pump+ dump)
followed through transition probabilities to the energy levels. The
populations of the different levels are represented by the following
lines: long-dashed line for|L0〉; solid line for|R0〉; dashed line for|L1〉;
dotted line for|B〉; and dot-dashed line for|Dn〉.
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perturbed system, we have noticed that the perturbation
interferes more strongly with the emission process than with
the absorption. All phase-dependent schemes (pump-dump for
instance) are more likely to be disturbed by the bath, which
can change completely the actual behavior of the dump pulse.
Also the perturbation is more efficient at longer times, and very
intense pulses leading to high-energy absorption are less affected
by the minor oscillation of the bath, which mainly changes the
landscape of the potential around the wells and barrier.
With only these general remarks we can already compare on

the average the robustness of the different optimal pulses. First,
single Gaussian pulses should be more robust than two Gaussian
pulses (at least when the dump pulse is mainly responsible for
the final yield and the scheme is highly phase sensitive).
Second, short time schemes are preferable to long time schemes
(so the Gaussian width here is the key parameter). Third, very
intense pulses leading to high-energy absorption are more robust
than weaker ones. Finally the most sensitive schemes will be
those implying resonant routes and tunneling reaction, since the
perturbation will degrade the quality of the frequency matching
and will inhibit the tunneling rate. With these trends at hand
we can understand the “hierarchy of stability” of the pulses
versus the intensity of the perturbation, which goes from ISP
to SPD, PDP, WLP, PLD, APD, and finally LPD (or CW) in
descending order of stability (here we consider stability the ratio
between the perturbed yield and the optimal yield in the absence
of bath). Schemes like SPD occupy a very high place in this
“ranking” because the pump pulse is already responsible for
leading the reaction (and by means of a short pulse), while the
role of the dump pulse is reduced to deploy what remains in
the excited levels.
Now we read the table by columns in order to extract detailed

information about the dependence of the dynamics with the bath
frequency. In Figure 3A we show this dependence for three
optimal pulses and for a comparatively low value of the time-
dependent perturbation amplitudeAc. In the ISP case we see a
very slow increase in the yield (greater stability) for higher bath
frequencies. For higher values ofAc or for the WLP and PDP
cases, the same behavior is seen, although now the effect of
stabilization at high frequencies is stronger. The behavior is
completely different for the SPD, PLD, or APD pulses. In these
cases the efficiency of the pulse shows oscillations with
maximum values for middle or high bath frequencies. This
effect is clearer for the APD pulse, and in Figure 3B we show
for this case how asAc is increased, there appear sharper
windows in the bath spectral range where the pulse efficiency
is greater. The same phenomenon has been observed for the
SPD and the PLD pulses. Taking these facts into account, we
can choose different optimal pulses depending on the spectral
distribution of the bath, whether it is centered at low, middle,
or high values of frequencies. For very high values ofAc the
perturbation almost destroys the efficiency of the pulses and
the behavior with respect to bath frequency is less clear (in a
sense the windows where the efficiency is greater converge into
a fast oscillating dependence).
Finally we are concerned with the sensitivity of these optimal

dynamics with respect to the phase of the bath-induced
oscillations. The other parameters of the bath coupling,ωb and
Ac, can be more or less controlled by choosing a particular bath
or temperature. But the initial phase of the perturbation,φb, is
both uncontrolled and unknown. Moreover if we concentrate
on the liquid in bulk, there are incoherent mechanisms that
would imply the changing of phase during the time evolution
of the system. Therefore we would like to have optimal pulses

leading to reactions as independent ofφb as possible. In general
terms we observe lower sensitivity for low values ofAc and
from very lowωb to very highωb. To give a rough measure
of the variation of the results induced by the perturbation phase,
we have averaged the yields obtained for all phase and frequency
values and we measured the dispersion of these results. Since
the variation induced by phase is much faster than that induced
by frequency, the statistics should reflect mainly the dispersion
of the values caused byφb. We show this in Table 3. The
table data reflect the greater dispersion at increasingAc (but
for higher values the overall effect of control suppression makes
the dispersion also decrease) and give a picture of the robustness
of the pulses close to the “ranking” we had already inferred
from the averaged values.
What is left from the statistics seems more interesting. For

Figure 3. Effect of bath frequency (ωb) and bath coupling intensity
(Ac) in the reaction driven by the optimal fields. In A we show the
reaction yields for three different pulses, ISP (intense short pulse), APD
(asymmetric pump dump), and SPD (symmetric pump dump) withAc
) 0.25fc

0 fixed. In B we show the reaction yields for the APD case and
for different values of the coupling. From top to bottom,Ac ) 0.10,
0.25, 0.40, and 0.75fc

0.

TABLE 3: Dependence of the System on the Perturbation
Phasea

Ac ) 0.1fc
0 Ac ) 0.25fc

0 Ac ) 0.4fc
0

ISP 70( 6 50( 13 33( 15
WLP 65( 11 40( 17 20( 25
PDP 76( 5 51( 17 28( 16
APD 69( 20 42( 23 20( 16
SPD 70( 13 44( 15 24( 16
PLD 74( 10 46( 16 24( 15
LPD 52( 17 21( 13 6( 5

aWe give the average and dispersion values of the yield (both in
percent) for all bath frequencies and phases. The nomenclature is the
following: ISP stands for intense short pulse; WLP stands for weak
long pulse; PDP stands for pump-dump pulse; APD stands for
asymmetric pump-dump; SPD stands for symmetric pump-dump;
PLD stands for pump and longer dump; LPD stands for longer pump
and dump; and CW stands for continuous wave field (more than 1 ps).
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certain values of bath frequency we have seen that the yields
were almost fully phase independent. We refer to nodes to these
particular values ofωb. For the cases of ISP, WLP, and PDP
(those that show greater efficiency for higherωb) the nodes
appear for middle or high values of the frequency. Most
intriguing, for the APD, SPD, and PLD cases, the nodes show
up at the spectral windows. In Figure 4 we show the variation
of the yields with phaseφb and frequencyωb for the optimal
pulses ISP and APD and fixed value ofAc (Ac ) 0.001 uma‚Å/
fs). Between vertical lines we display the results forφb ranging
from 0 to 2π, and from left to right the overall variation with
increasingωb. Also shown are lines that link the different results
for a fixed value of the phase (0 orπ) asωb increases. For the
ISP case, we see one “node” around 200 cm-1, although in
general the whole dynamic behavior is quite independent of
the phase and frequency of the bath. For the APD case at low
frequencies the proficiency of the pulse will highly depend on
the relative phase of the bath, but forωb also around 200 cm-1

we have both higher values of the yield and phase insensitivity.

5. Summary and Conclusions

In the present paper we have explored different physical
schemes that drive the isomerization reaction of a simple system
by means of femtosecond IR pulses. The goal was to test the
efficiency and robustness of the schemes in the presence of
environment perturbations. The chosen system was a bistable

potential with only three localized states between both wells,
and the bath was modeled by a monochromatic wave modulating
the amplitude of the barrier. We tested the resistance of the
reaction control for different values of the frequency and
amplitude of the perturbation. The relative phase of the bath
field with respect to the system was kept fixed during the laser
action, but the initial conditions were sampled and averaged.
The chosen pulses were obtained by optimizing the parameters
that define Gaussian-shaped pulses or linear combinations of
the former, using a gradient method algorithm in the frame of
OCT.
With respect to the efficiency of the pulses we have compared

single Gaussian versus double Gaussian schemes, and intense
short pulses versus weak long pulses (which in the limit of our
time selection we called CW fields). From this outset we have
seen that the most sensitive parameters are the intensity of the
pulse, the fwhm, and the carrier frequency in the given order.
For very short time experiments (100 fs) only very intense pulses
could provide reaction yields over 50%. Increasing the pulse
duration, weaker pulses with improved yields could be obtained.
In all cases the dynamic evolution of the system implied
absorption of energy above the barrier and the successive
emission of photons projecting from the system into the left
well. Qualitatively the dynamics was mainly governed by
transient effects and strong laser field phenomena. Of course,
single Gaussian schemes can provide acceptable yields in
isomerization reactions only where the barrier is very shallow
as in the present study. We have seen that double Gaussian
schemes simulating pump-probe experiments always improved
the reaction yields, by refining the basic mechanism of fast
absorption followed by emission of photons, but with the
drawback of important phase sensitivity. The realization of this
pump-probe scheme was only clear for greater time scales (400
fs) where the pulses did not overlap. In this scenario we have
seen that longer time fields could be used either as a pump or
dump pulse, allowing a decrease in the intensity of the field
and reducing the degree of phase sensitivity. Resonantly
enhanced mechanisms become more important, but only for time
scales above picosecond can the tunneling rates to reaction
compete with the multiphoton routes.
With respect to the robustness of the previous pulses we have

compared the resistance of the optimal dynamics with the effect
of increasingly strong perturbations with different frequencies
(ωb). We have seen that the perturbation mainly interferes with
the emission process of the dynamics, and its action is more
efficient at longer times and at low energies. Resonant-based
mechanisms and phase-sensitive schemes are the least robust
strategies, while the very fast and intense processes, though not
very efficient, are the most robust. To minimize the effects of
the strong perturbation, the fields should be stronger than the
oscillatory perturbation during all the processes of absorption,
crossing the barrier, and emission, as shown by Korolkov et
al.5 The balance between the optimal efficiency and the
resistance to perturbation at different bath frequencies makes
the choice of the “most optimal pulse” not unique, but changing
with the environment conditions. For instance, we have seen
that the short time pulses (ISP, WLP, and PDP) show greater
resistance to the perturbation at higher bath frequencies, while
longer time pulses (APD, SPD) show greater efficiency at certain
values of the bath spectral range, which we called frequency
windows. On the other hand, the phase dependence with the
bath is usually lower at smaller bath couplings and higher bath
frequencies, and for certain values ofωb there was almost no
phase dependence at all. We called phase nodes the spectral

Figure 4. Bath-phase dependence of the reaction yields for the ISP
case (intense short pulse) in A and for the APD case (asymmetric
pump-dump) in B. Ac ) 0.1fc

0 is fixed for both cases. Between
vertical lines we display the results forφb ranging from 0 to 2π, and
from left to right the overall variation with increasingωb. We
superimpose the lines that join values for the same phase at different
frequencies.
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range with these phase stabilization properties, and most
intriguing we have observed that these nodes appeared at the
aforementioned frequency windows for the pump-dump opti-
mal pulses. Therefore short intense pulses are the choice at
higherωb, but for certain intervals the pump-probe schemes
seem more fruitful. Also, the coincident properties of frequency
windows (or essentially frequency independence in a whole
range) and phase nodes make plausible that these conclusions
can be extended to more complete descriptions of the bath,
including implicit decoherent mechanisms and a wider spectral
(not monochromatic) range as the bulk of a liquid. Therefore
we think that we can be confident about the survival of control
mechanisms in realistic condensed phases even at the strong
perturbation conditions explored in this paper.
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